About Gaia Engineering

Gaia Engineering is the name we use to describe the development by TecEco and others of a tececology that substantially rectifies problems on the planet. Gaia Engineering is not is not a single process or paradigm. It embraces a number of new technical paradigms and processes designed to, when combined, solve global warming and waste problems by substantial reversal of moleconomic flows. The Gaia Engineering tececology will work because combined correctly these new technologies and processes will make money. On a large scale the Gaia Engineering project will sequester significant amounts of atmospheric CO2 and convert a substantial amount of waste to resource.

TecEco and others have formed the The Global Sustainability Alliance to raise awareness and finance for Gaia Engineering and below follows a short description of what Gaia Engineering is all about. On the main menu you will find a link to a new web site with much more detail about Gaia Engineering.

Gaia Engineering is an agglomeration of new technologies including TecEco’s Tec-Kiln technology and cements, hydroxide-carbonate slurry CO2 capture technologies, carbon dioxide scrubbing technologies, and a front end seawater brine or bitterns carbon capture system.

Graphic Illustration of the Gaia Engineering Process for Seawater

As there is 1.29 grams of magnesium in every litre of seawater and brines generally contain even more there is enough magnesiaum to last over a billion years at current needs for sequestration. With natural replenishment the resource will last indefinitely.

The inital process for carbon capture in Gaia Engineering will probably be chosen from one of the following technologies

Gaia Engineering Front End Processes

Process: Inputs: Outputs: Links:
N-Mg Process Brines such as oil process water and bitterns and CO2 Mineral salts, carbonate building materials and aggregates, Eco-Cements and fresh water TecEco Pty. Ltd.
Hydropyrolysis of Bitterns .Bitterns and water Mangesium oxide and chlorine gas (or hydrochloric acid). This process could be combined with the N-Mg Process to supply acid.  
Ultra Centrifuges Seawater or brine Provided materials can be found to withstand the forces involved, potentially similar by products to the N-Mg Process.  


Carbonic anhydrase, saltwater or brines and CO2

Using carbonic anhydrase and other enzymes to mimic carbonate formation in nature.


Most of the carbonate produced is will be cut into blocks or agglomerated to make aggregates Some will be used in an evolving number of sub-processes including:

The TecEco Tec-Kiln will calcine magnesium carbonate without releaseas, capturing the gas for incorporation into cellulose, fuel or other useful compounds including the main component of TecEco Tec, Eco and Enviro-Cements and input for the Tec-Reactor hydroxide/carbonate carbon capture cycle. Eco-Cement concretes absorb more atmospheric CO2 as they harden and will be used to bind together aggregates and other building components produced by the front end processes. All TecEco cements can utilise waste.

The carbonates produced by the Tec-Reactor hydroxide/carbonate Carbon Capture cycle are also recycled around it with some bleed off into the MgCO2 cycle shown by the green arrow in the above diagram and in black arrows below.

Gaia Engineering Flow Diagram

The MgCO2 cycle (or to the technically minded, the Magnesium thermodynamic cycle) incorporates the Tec-Reactor hydroxide/carbonate Carbon Capture cycle and mimics photosynthesis using the same central atom (magnesium). It can go around and around like a bicycle wheel as together, mass and energy are neither created nor destroyed, only lost outside the system through inefficiencies. There is an exothermic part of the cycle where heat is required and an endothermic part where heat is released. To make the process as efficient as possible it is desirable to capture the heat from the exothermic parts and transfer it to the endothermic parts of the cycle to some extent depending on flows.

All CO2 captured ends up permanently sequestered as man made carbonate building materials thereby mimicking natural processes. Solving the global warming crisis is that easy.

printer friendly
[1] The orginal name that the Global Sustainability Alliance adopted for their tececology was "CarbonSafe". After reading some of James Lovelock's books John Harrison realised that "CarbonSafe" as it was then called was not just about carbon sequestration, it touched on many sustainability issues and a name embracing the interconnectivity of processes and problems on the planet would be more appropriate. John therefore chose the name Gaia Engineering as a tribute to James Lovelock. Gaia, gaea or ge was the greek goddess of the earth and mother of Cronus and the Titans in ancient mythology. The word engineering is harder to attach meaning to. We prefer a combination of the definition " turning ideas into reality" and "the discipline dealing with the art or science of applying scientific knowledge to practical problems"